

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Li, X.]
On: 17 April 2010
Access details: Access Details: [subscription number 921365453]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Geographical Information Science
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713599799

Parallel cellular automata for large-scale urban simulation using load-
balancing techniques
Xia Li a; Xiaohu Zhang b; Anthony Yeh b;Xiaoping Liu a

a School of Geography and Planning, Sun Yat-sen University, Guangzhou, PR China b Department of
Urban Planning and Design, The University of Hong Kong, Hong Kong, PR China

First published on: 02 March 2010

To cite this Article Li, Xia , Zhang, Xiaohu , Yeh, Anthony andLiu, Xiaoping(2010) 'Parallel cellular automata for large-
scale urban simulation using load-balancing techniques', International Journal of Geographical Information Science, 24:
6, 803 — 820, First published on: 02 March 2010 (iFirst)
To link to this Article: DOI: 10.1080/13658810903107464
URL: http://dx.doi.org/10.1080/13658810903107464

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713599799
http://dx.doi.org/10.1080/13658810903107464
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Parallel cellular automata for large-scale urban simulation using
load-balancing techniques

Xia Lia*, Xiaohu Zhangb, Anthony Yehb and Xiaoping Liua

aSchool of Geography and Planning, Sun Yat-sen University, Guangzhou, PR China; bDepartment of
Urban Planning and Design, The University of Hong Kong, Hong Kong, PR China

(Received 11 January 2009; final version received 9 June 2009)

Cellular automata (CA), which are a kind of bottom-up approaches, can be used to
simulate urban dynamics and land use changes effectively. Urban simulation usually
involves a large set of GIS data in terms of the extent of the study area and the number of
spatial factors. The computation capability becomes a bottleneck of implementing CA for
simulating large regions. Parallel computing techniques can be applied to CA for solving
this kind of hard computation problem. This paper demonstrates that the performance of
large-scale urban simulation can be significantly improved by using parallel computation
techniques. The proposed urban CA is implemented in a parallel framework that runs on a
cluster of PCs. A large region usually consists of heterogeneous or polarized develop-
ment patterns. This study proposes a line-scanning method of load balance to reduce
waiting time between parallel processors. This proposed method has been tested in a fast-
growing region, the Pearl River Delta. The experiments indicate that parallel computation
techniques with load balance can significantly improve the applicability of CA for
simulating the urban development in this large complex region.

Keywords: parallel computing; load-balancing; GIS; cellular automata; urban
simulation

1. Introduction

Parallel computing, using multiple computer resources simultaneously to solve one pro-
blem, has become an important research direction of computer science, which has achieved
significant progress recently. Through applying parallel computing techniques, large com-
putational tasks are usually divided into smaller ones, which can be distributed to a single
computer in a workstation cluster and be calculated concurrently. Parallel computing
provides a powerful tool for high-performance computing that can alleviate the current
bottleneck problems in many geographical applications. Actually, explorations of paralle-
lism in GIS were started about 10 years ago with a special issue in the International Journal of
GIS 1996 as a milestone (Densham and Ding 1996, Clematis et al. 2003).

Research has indicated that parallel computing is effective for solving large-scale
geographical models (Turton and Openshaw 1998), such as air pollution diffusion
(Owczarz and Zlatev 2002), combinatorial resource allocation (Morales et al. 2000), and
visualization and modeling (Vokorokos 2005). Parallel computing is also very attractive

International Journal of Geographical Information Science
Vol. 24, No. 6, June 2010, 803–820

*Corresponding author. Emails: lixia@mail.sysu.edu.cn;lixia@graduate.hku.hk

ISSN 1365-8816 print/ISSN 1362-3087 online
2010 Taylor & Francis
DOI: 10.1080/13658810903107464
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

mailto:lixia@mail.sysu.edu.cn
mailto:lixia@graduate.hku.hk
http://www.informaworld.com

for facilitating high-performance computing with distributed data grids in the emerging
cyber infrastructures for geosciences (Zhang et al. 2007). For example, parallel computing
has been used in the studies of geodynamo (Glatzmaier and Roberts 1995), seismic
wave propagation (Komatitsch and Tromp 2002), and mantle convection (Kameyama
and Yuen 2006).

The computational capabilities of cellular automata (CA) have been extensively
documented since these models were first proposed by von Neumann and Ulam in
the 1940s (Bandini et al. 2001). These models have been applied to the simulation of
fluid dynamics, crystal growth, and biological processes (Goles 1989). Recent studies
also show that CA are also very suitable for simulating a variety of complex geogra-
phical phenomena, such as lava flows (Barca et al. 1993), rock fracturing (Norman
et al. 1991), weather modeling, wildfire propagation (Clarke et al. 1994, Karafyllidis
and Thanailakis 1997), vegetation successions (Atkinson et al. 1998, Bandini et al.
2001), forest dynamics (Lett et al. 1999), epidemic propagation (Sirakoulis et al. 2000),
landscape changes (Soares-Filho et al. 2002), settlement development (Deadman et al.
1993), and urban dynamics and land use changes (White and Engelen 1993). It is
attractive that emerging behaviors and global patterns of these phenomena can be
simulated by the local interactions of CA (White and Engelen 1993, Batty and Xie
1994, Wu 2002). The simulation of complex urban dynamics and land use changes is
among the most successful examples of CA applications (Clarke et al. 1997, Li and Yeh
2004, Pontius and Malanson 2005, Li and Liu 2006).

CA are a kind of discrete models because they operate on discrete cells, states, and time.
Discrete cells are defined by dividing the space into many basic processing units so that
transition rules can be applied to each cell. The data volume of the simulation is related to
cell sizes. The discrete state of each cell is updated by iterations (discrete time). The use of
discrete space, states, and time in CA perfectly fits the features of digital computers and
raster GIS formats. Transition rules, which are the core of CA, determine state conversion for
each cell. Various kinds of spatial variables are usually prepared from GIS for defining
transition rules (Li and Yeh 2002). The computation of CA is very intensive for solving
practical simulation problems because of using a rich set of spatial data. Simulating natural
phenomena usually involves large computational tasks by using fine resolutions of spatial
data and time steps, and large numbers of spatial variables (Costanza and Voinov 2003).
Traditionally, sequential implementation of CA often encounters the speed bottleneck when
simulating large and complex regions.

The regular topologies of CA perfectly fit straightforward parallelization requirements.
The locality of interactions of CA is another feature that allows the implementation of these
models on parallel computers (Bandini et al. 2001). Fixed nondeterministic local rules can
be applied to each cell in a parallel way. CA have been considered as one of the first parallel
computing abstract models (Cannataro et al. 1995).

There have been an increasing number of studies on the introduction of parallel techni-
ques to CA in recent years. Indeed some general-purpose parallel CA models have been
developed and brought to real-world application. Among them the most significant systems
are CAMEL (Cannataro et al. 1995), CAPE (Norman et al. 1991), and NEMO (Hutchinson
et al. 1996). However, these systems cannot be directly used to solve urban simulation
effectively. Parallel urban simulation is quite unique in data decomposition because a large
region usually has heterogeneous or polarized development patterns. The challenge is to
arrange equal workloads among processors according to spatial heterogeneity. Few studies
have been carried out on developing urban CA for simulating large complex regions under
the parallel environment. The computation time will become a bottleneck if sequential CA is

804 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

applied to this kind of simulation. The development of urban CA on parallel computers can
enhance the capability of CA for solving practical problems.

In this study, a parallel CA model is proposed for facilitating large-scale urban simula-
tion. It is based on the Message Passing Interface (MPI) and load-balancing techniques.
These techniques provide powerful tools for developing high-performance parallel and
distributed applications of using urban CA. ‘Ghost cells’ are used to exchange state
information across the boundaries between decomposed parts. Moreover, a line-scanning
method of load balance is proposed to reduce the waiting time between parallel processors
for improving the overall simulation efficiency.

2. Parallel computing for implementing urban cellular automata

2.1. Urban cellular automata

Although urban CA may have different model structures, the general form of these models
can be given as follows (Batty and Xie 1994, Li and Yeh 2000):

Stþ1ij ¼ f Stij;�
� �

(1)

where S is a set of possible discrete states at location ij, � is the neighborhood of all cells
providing input values to the function f, and f is the transition function (transition rules) that
determines state conversion from time t to t + 1.

Explicit transition rules are usually required for programming urban CA instead of
using this general structure. A convenient way to represent transition rules is based on
transition probabilities or transition potentials. For example, the following rule-based
structure is used to estimate development probabilities (Batty 1997):

IF any cell {x � 1, y � 1} is already developed
THEN Pij ¼

P
xy2� Pxy=8

&
IF Pij . some threshold value
THEN cell ij is developed with some other probability �ij

where Pij is the development probability for cell ij and xy represents all the cells that are from
the Moore neighborhood � including the cell ij itself.

Urban CA usually have a more complex form of transition rules than classical CA. It is
because urban CA need to include various spatial variables and constraints for simulating
realistic urban dynamics. A convenient way is to use multicriteria evaluation (MCE)
techniques to estimate development probabilities. MCE can effectively capture the com-
bined influences of various spatial factors that govern different development regimes in
urban simulation (Wu and Webster 1998). Development probabilities are determined by a
combined evaluation score rij. A nonlinear transformation is used to discriminate the
simulation patterns by using the following equation:

pt
ij
¼ � rtij

� �
¼ exp �

rt
ij

rmax
� 1

 !" #
(2)

where pt
ij
is a dispersion parameter ranging from 0 to 1, rt

ij
is the combined evaluation score at

location ij, and rmax is the maximum value of rt
ij
.

International Journal of Geographical Information Science 805

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

The composite evaluation score (rt
ij
) is calculated based on the following linear equation:

rt
ij
¼ a0 þ a1x

t
1
þ a2x

t
2
þ � � � þ amx

t
m
þ � � � þ aMx

t
M

(3)

where a0 is the constant, xtm is a spatial variable representing a driving force for urban
development, and am is the parameter (weight) representing the importance of this variable
in calculating the development probability.

A modification to this MCE-CA model is to transform it into a logistic form so that the
calibration is possible (Wu 2002):

pt
ij
¼

exp �rt
ij

� �
1þ exp �rt

ij

� � ¼ 1

1þ exp �rt
ij

� � (4)

Urban development is also subject to neighboring influences, a series of physical constraints,
and some uncertainties. By incorporating all these factors, the above equation is further
revised as follows:

pt
ij
¼ 1þ � ln �ð Þ�ð Þ 1

1þ exp �rt
ij

� � · f �t
ij

� �
· con stij

� �
(5)

where � is a stochastic factor ranging from 0 to 1, � is a parameter to control the stochastic
degree, f ð�t

ijÞ is the development intensity in the neighborhood of �ij, and conðstijÞ is the
total constraint score ranging from 0 to 1.

At each iteration, pt
ij
is compared with a threshold value to determine whether a non-

urbanized cell will be converted into an urbanized cell:

Stþ1ij ¼
Converted; ptij � T

Non Converted ptij < T

(
(6)

where T is a threshold value.
In this study, parallel urban simulation is illustrated based on the logistic-CA model.

Other types of CA can be implemented by using the same architecture because parallel
computing can be independent of application models. This flexibility is desirable as it
enables the modification of CA models without altering the parallel computing structures.

2.2. MPI for parallel CA

Dividing the study area into a number of sub-regions is the first step to implement parallel
urban simulation. A distinct feature of parallel CA is that the determination of state conver-
sion for a cell requires the input of its neighborhood’s data. Therefore, a decomposed part
assigned to a computing unit must have overlapping belts with its neighboring parts. The
overlapping is related to the matrix size (e.g., 3 · 3, 5 · 5, 7 · 7, 9 · 9, and 11 · 11) in
defining the local influences (interactions).

The state of a central cell at time t + 1 is related to the states of this cell and its neighbors
at time t. In the implementation of parallel CA, the whole study area needs to decompose
into many parts. Cells are distributed by belts or folds over several threads running on

806 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

different computers (Mazzariol et al. 2000). Every thread carries out these tasks: (1)
sending and receiving the states of neighboring cells and (2) calculating the current state
of central cell.

Neighboring information is received during the computation of this step and sent during
the computation of the next step. These overlapping belts are called ‘ghost cells’ (Figure 1).
In parallel urban simulation, the boundaries must be updated at each time step to address
neighborhood influences. This boundary update process involves very intensive commu-
nications because there is a large number of ‘ghost cells’. The number is related to the
neighborhood size in defining CA. These ‘ghost cells’ should be updated at every time step
to exchange the most recent values of the corresponding active cells on neighboring
processors.

One of the most common parallel programming environments is based on the MPI for
the exchange of information between neighboring processors (Morales et al. 2000). Avery
important goal of MPI is to provide a widely portable and efficient programming library
without sacrificing performance (Al-Tawil and Moritz 2001). MPI has usually been
adopted in the parallel computing environment (Hempel and Walker 1999). MPI provides
the two key aspects of parallel programming: (a) synchronization of processes and (b)
read/write access for each processor to the memory of all other processors (Chan et al.
2003). MPI offers routines to interchange information between tasks, asynchronous
blocking send, asynchronous blocking receive, and non-blocking receive functions
(Morales et al. 2000).

In this parallel urban CA, MPI is used to implement the boundary update process. The
point–point data exchange is accomplished by using the functions of MPI_Send and
MPI_Recv. The message exchanges are only performed for these cells lying on partition
boundaries. For example, extra caching columns are added at the right edge and left edge of
each sub-region to receive and send data to its neighboring processor (Figure 1). The process
ID of a sub-region is recorded by MPI_Comm_rank. The process IDs of its left and right
neighbors are stored by LEFT_RANK and RIGHT_RANK.

The variables defined for each process are listed as follows:

int SIZE = MPI_Comm_size() //get the total number of processes
int rank RANK = MPI_Comm_rank() //get current process ID of a sub-region
int LEFT_RANK = (RANK - 1 + SIZE)%SIZE //get process ID of its Left Neighbor
int RIGHT_RANK = (RANK - 1 + SIZE)%SIZE //get process ID of its Right Neighbor

CPU (i – 1) CPU (i + 1)CPU (i)

Figure 1. Implementation of ghost-cell techniques.

International Journal of Geographical Information Science 807

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

The pseudo codes for the ghost-cell exchanging algorithm are illustrated as follows:

IF (RANK(current process) has LEFT_RANK(Left Neighbor)) {
MPI_Send(Send) ghost cells To LEFT_RANK(Left Neighbor)
MPI_Recv(Receive) ghost cells From LEFT_RANK(Left Neighbor)

}
IF (RANK(current process) has RIGHT_RANK(Right Neighbor)) {

MPI_Send(Send) ghost cells To RIGHT_RANK(Right Neighbor)
MPI_Recv(Receive) ghost cells From RIGHT_RANK(Right Neighbor)

}

2.3. Load-balancing techniques for distributing spatial data among processors

There are a number of data decomposition schemes for distributing the spatial data among
processors. First, there are two major types of data decomposition: (1) division based on
equal areas and (2) division based on equal workloads. The first option is efficient only if the
study area is homogenous. In fact, this option cannot lead to equal workloads among
processors in most cases because of heterogeneous distribution of geographical phenomena
in nature (e.g., the existence of development clusters) (Figure 2). The second option is to
address this problem by evenly distributing computation loads among processors.

Each major type can have three sub-types of the decomposition: (1) dividing the study
region into n horizontal folds (rowwise decomposition); (2) dividing the study region into n
vertical folds (columnwise decomposition); (3) dividing the study region into n rectangular
sub-regions (chessboard decomposition) (Quinn 2004) (Figure 3). It is straightforward and
easy to implement the first two sub-types. Alternately, the chessboard decomposition, which is
relatively complicated, may be more appropriate for capturing the heterogeneity of geogra-
phical features in large complex regions than the first two sub-types. It is because the chess-
board decomposition concerns not only the horizontal inequality but also the vertical
inequality. It is expected that the chessboard decomposition can achieve more efficient parallel
computing under the situations of polarized or complex development patterns.

2.3.1. Division based on equal areas

A simple method of data decomposition for implementing parallel CA is to divide a study
region into equal areas. This method is ideal if the computation time of each fold is
approximately the same. The simulation will be implemented by p parallel threads for a
region ofm columns · n rows. In the partitioning by columns, each thread will be in charge

Figure 2. Development clusters in the study areas.

808 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

of m/p neighboring columns for data processing. In the partitioning by rows, however, each
thread will be in charge of n/p neighboring columns for data processing.

The partitioning by columns or rows is straightforward and the communications between
neighboring processors are quite simple. These two sub-types of data decomposition only
consider the communications between the right neighbor and the left neighbor (dividing by
columns) or between the upper neighbor and the lower neighbor (dividing by rows).
However, the chessboard division involves very complex communications because the
data exchange is carried out between eight neighbors (Figure 4).

For each type of decomposition, MPI is used to update the states of cells at the boundary.
The boundary update is convenient for the first two sub-types. The decomposed data will be
sent to each processor after the region has been divided based on equal areas. The exchange
of neighboring information takes place at each iteration of simulation. Two steps of data
exchange are required for completing the state update of the boundary cells (Figure 5). For
the chessboard division, the update of neighboring information is quite complicated. The
shift algorithm is used to reduce the total number of communications (Palmer and Nieplocha
2002). This algorithm first exchanges the boundary data in the horizontal direction and then
exchanges the boundary data in the vertical direction (Figure 6).

2.3.2. Division based on equal workloads

A critical issue with the equal-area decomposition is its inefficiency in communications
between different processors under complex situations. Some processors have to wait longer

Figure 3. Three methods for data decomposition: (a) divided by rows, (b) divided by columns, and (c)
divided by chessboard.

International Journal of Geographical Information Science 809

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

for the inputs from other processors if the workload is not the same. This can result in the
increase in the total computation time for the whole simulation. For the equal-area decom-
position, the imbalance of workloads between processors is severe if there is inhomogeneous
distribution of geographical features, such as the uneven distribution of rivers, steep
mountains, and ecological protected lands. The cells that belong to the above land use
types almost do not need time to compute because they cannot be urbanized in the simula-
tion. A simple way for equally distributing the computation loads among processors is to
remove these unavailable cells in dividing the region. Moreover, there is another type of
unavailable cells (already urbanized land) that cannot be determined at the beginning of
simulation. The number of urbanized cells will grow as the simulation continues.

The computation time for processing available cells is the same because the transition
rules are uniformly applied to these cells. Although the unavailable cells (e.g., rivers, steep
mountains, ecological protected lands, and urbanized land) are excluded from the conver-
sion, computation time is still required for identifying these unavailable cells in the pro-
gramming. The computation time for available cells and unavailable cells can be estimated
by experiments. The total numbers of these two types of cells can also be calculated at each
iteration.

The total computation time at each iteration is then determined by the following
equation:

T ¼ nav · Tav þ nun · Tun (7)

Figure 5. Two steps of data exchange for completing the state update of the boundary cells.

Figure 4. Complex communications for the chessboard decomposition.

810 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

where nav and nun are the total numbers of available (e.g., agricultural land) cells and
unavailable (e.g., water, steep hills, and urbanized land) cells. Tav and Tun are the computa-
tion time for available cells and unavailable cells, respectively.

If there are k parallel nodes (processors) for dividing the region into k sub-regions, each
sub-region should be assigned with approximate workloads for efficient computation. The
optimal computation time from the balanced assignment is expected to be T/k for each
processor.

There is a dilemma for keeping the load balance between processors for the whole
simulation. The optimal partition for the balance can be found at a particular time. However,
this optimal partition will have imbalanced workloads at other time. It is impossible to find a
fixed data division that can keep the load balance all the time because of the increase in the
number of urbanized cells. The idealized load balance can only be obtained by using
dynamic data divisions that require the re-distributing of the spatial data to each processor
at each time. However, this dynamic balance cannot yield an optimal solution because the re-
distributing itself needs a long waiting time. Therefore, a fixed division has to be adopted
although this cannot guarantee the load balance all the time.

A simple way is to determine the optimal division of load balance at the beginning of
simulation. This study proposes a line-scanning method to obtain the load balance between

Figure 6. The shift algorithm for updating neighboring information of the chessboard division.

International Journal of Geographical Information Science 811

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

processors. For the rowwise decomposition, the line-scanning is carried out to calculate the
computation time of each row after the total numbers of these two types of cells (available
cells and unavailable cells in terms of urban development) have been obtained. After the total
computation time of all the rows has been obtained, the division of k folds can then be
determined by ensuing each fold with equal computation time. The same procedure can be
used to decompose the data for the columnwise decomposition.

Optimal chessboard division is not straightforward because of its complex structure.
This problem is solved by using an approximation procedure that determines a total of
kr · kc folds by two steps: (1) obtaining the optimal kr horizontal folds by using the same
procedure for the rowwise decomposition and (2) determining the optimal kc vertical folds
for each horizontal fold using the same way. After these folds have been obtained, fold (i, j) is
assigned to k¢th processor (where k¢ = (i - 1) · kc + j, kr · kc = k, 1� i� kr, 1� j� kc, and
1 � k¢ � k).

3. Application and results

3.1. The study area

This proposed parallel CA was applied to the simulation of a fast-growing region in South
China. Experiments were carried out to simulate the urban dynamics for both the Dongguan
city and the whole Pearl River Delta (Figure 7). This region witnessed fast urban expansion
because of the rapid economic development in the last three decades (Li and Yeh 2004).
Urban simulation using CA could provide useful information for urban planning and manage-
ment in this region. However, data size has been a bottleneck for urban simulation when the
study area is large and many spatial variables are involved. In this study, the cell size is 28.5 m
for the initial land use layers that are classified from Landsat TM images. There are a total of
2693 · 1864 = 5,019,752 cells for Dongguan and 6084 · 6756 = 41,103,504 cells for the

Figure 7. The study area in the Pearl River Delta.

812 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

whole region. The computation is intensive by applying transition rules to each cell iteratively
for the simulation of urban growth in this large region. Resolution degradation may be used to
reduce the data size, but this will cause the loss of many small land use parcels. Parallel
computing is expected to alleviate the computation time problem if high-resolution data are
used for urban simulation.

In this study, Landsat TM images dated in 1988, 1993, 1997, and 2004 were used to train
and verify the proposed parallel CA model. The first two TM images were used to derive the
transition rules whereas the remaining images were used to validate the simulation results.
The spatial information included land use types, topography, and various kinds of proximity
variables (e.g., distances to roads, expressways, railways, and town centers). This parallel
model was compared with the sequential model based on the same logistic-CA form. Other
types of CA can be implemented by using the same parallel architecture because it is
independent of CA model structures.

3.2. Data decomposition schemes and results

The proposed parallel CA was programmed by using C language and MPI in a Linux
environment (Fedora6.0). The switch, Tp-Link TL-SF1024V, was used to connect eight
computers with the Ethernet speed of 100Mbps. Each of these computers had a Intel CPU of
CoreTM 2 Duo (E6600) 2.40 GHz and a 2G memory.

As the rowwise decomposition is just different from the columnwise decomposition in
terms of the direction, this study only selects the rowwise decomposition for the experi-
ments. Therefore, there are two sub-types of data decomposition: the rowwise decomposi-
tion and the chessboard decomposition. Figure 8 shows these two sub-types of data
decomposition: equal areas and equal workloads.

For the implementation of data decomposition of equal workloads, the average compu-
tation time for processing an available cell (Tav) and an unavailable cell (Tun) was determined
by using the line-scanning method. These values were obtained by measuring the actual time
for processing these two types of cells (Table 1).

Figure 8. Rowwise decomposition, columnwise decomposition, and chessboard decomposition.

International Journal of Geographical Information Science 813

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

This proposed parallel CA model was then applied to the simulation of Dongguan and
the whole Pearl River Delta in the period of 1988, 1993, 1997, and 2004. Landsat TM images
were also used to obtain the actual urban development for these years. Figure 9 shows the
goodness of fit between the actual and simulated urban development. The overall accuracy
was 85.3% according to the cell-by-cell comparison.

The execution time, speedup, and efficiency can be used as the metrics for evaluating the
performance of the proposed parallel CA. In parallel computing, speedup refers to howmuch
a parallel algorithm is faster than a corresponding sequential algorithm. The indicator of
speedup is calculated as follows:

Sk ¼
Ts
Tk

(8)

where k is the number of processors, Ts is the execution time of the sequential algorithm (one
processor), and Tk is the execution time of the parallel algorithm with k processors.

A computing task can be divided into two parts: the part unavailable for parallel
computing and the part available for parallel computing. The computing time can be
calculated as follows:

Ts ¼ Tn þ Tp (9)

where Tn is the computing time of the part unavailable for parallel computing and Tp is the
computing time of the part available for parallel computing.

For k processors, the parallel computing time is given as follows:

Tk ¼ Tnk þ
Tpk
k
þ Tcomm (10)

where Tcomm is the time for communication.
The efficiency is represented as follows:

Ek ¼
Sk
k
¼ Ts

kTk
¼ Tnk þ Tpk

Tnk þ Tpk
k þ Tcomm

� �
· k
¼ Tnk þ Tpk

Tnk · k þ Tpk þ Tcomm · k
(11)

Table 1. The average computation time for processing an available
cell (Tav) and an unavailable cell (Tun).

Neighborhood Tav (s) Tun (s)

Dongguan
3 · 3 0.003674 0.000127
5 · 5 0.004550 0.000128
7 · 7 0.006082 0.000128
9 · 9 0.007916 0.000127

11 · 11 0.010132 0.000127

The Pearl River Delta
3 · 3 0.003522 0.000127
5 · 5 0.004637 0.000127
7 · 7 0.006163 0.000128
9 · 9 0.007815 0.000127

11 · 11 0.010058 0.000128

814 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

It is easy to find that the efficiency (Ek) of parallel computing falls within the range of
[0,1]. The efficiency will drop as the number of processors (k) increases because of the
longer communication time between processors. There are four kinds of data decomposition
schemes, the rowwise division of equal areas (RDEA), the rowwise division of equal
workloads (RDEL), the chessboard division of equal areas (CDEA), and the chessboard
division of equal workloads (CDEL). The execution time of parallel urban simulation is
related to the neighborhood size (Figure 10). The use of larger neighborhood size will
significantly increase the execution time for these four decomposition schemes.

Figure 11 shows the assessment results for the performance of parallel CA. The neigh-
borhood size is 11 · 11 cells. RDEL has the least execution time. Its execution time with
eight processor is only 13.8% and 17.2% of that with one processor (ordinary CA simula-
tion) for Dongguan and the Pearl River Delta, respectively. RDEA and CDEA have the
longest execution time for Dongguan and the Pearl River Delta, respectively. Therefore, data
decomposition based on equal areas is not an efficient method for parallel urban simulation.
Instead, data decomposition based on equal workloads can help us to reduce the execution
time.

Figure 9. Simulating urban dynamics of the whole Pearl River Delta using parallel CA: (a) actual and
(b) simulated.

International Journal of Geographical Information Science 815

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

Similar results are obtained by using the indices of speedup and efficiency. The indicator
of speedup clearly shows that the performance of simulating larger areas is poorer because
these lines lie more far away from the ideal speedup line (Figure 11). The indicator of
efficiency also indicates that the simulation of larger regions has poorer performance.
Although the use of more processors can reduce execution time, the efficiency of parallel
computing decreases as more processors are used according to the experiments. This result
coincides with the Equation (11).

The parameters of Initialization Time, Scatter Time, Barrier Time, Computation Time, and
Communication Time can provide additional information about the performance of the parallel
CA. Initialization Time indicates the time required in the initialization phase. In this stage, the
master node (usually node 0) of the parallel CA retrieves all the data sets that will be processed
in running time, whereas other nodes are just waiting in idle mode. Scatter Time indicates the
time for scattering the data to corresponding nodes. The master node sends the data to each
node one by one in this stage. Barrier Time refers to the waiting time because there are early
and late arrival nodes. When every node receives the corresponding data, the system starts
actual parallel computing routine. In this stage, the parallel CA iterates many generations for
the simulation of urban dynamics. Computation Time is the total time required in the intensive
computing phase. Communication Time is the sum of the time for communication in all
iterations. Among these parameters, Computation Time is undoubtedly the most concerned
one because its distribution in the parallel nodes has a significant impact on the efficiency.

Figure 12 shows the values of these time parameters by using eight processors for
various decomposition schemes. Computation Time is unevenly distributed among the
nodes for both rowwise and chessboard division. This will lead the parallel CA to work
inefficiently. The decomposition by equal workloads induces relatively even distribution of
Computation Time in each node, thus making effective use of the computation resources.
The CDEL seems to be effective in dealing with heterogeneous development patterns, but it
cannot produce the results better than RDEL. It is because CDEL needs extra time for
communication. This can be clearly found in Figure 12d.

4. Conclusion

Parallel computing has been increasingly used to solve hard computation problems in
geosciences. Parallel computing is a powerful tool for handlingmany geographical problems

Figure 10. The execution time and the neighborhood size for the urban simulation in the Pearl River
Delta.

816 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

that involve large volumes of spatial data. This technique can be used to improve the
performance of urban CA for simulating large regions. Urban CA is born to be parallel
because transition rules are unanimously applied to each cell in the simulation. This study
demonstrates that parallel computing can effectively reduce computation time in urban
simulation. Parallel computing is especially useful when various types of GIS data, such
as land use, topography, facilities, transportation, and population, are used as the inputs to
urban CA.

A number of techniques should be incorporated to improve the performance of
parallel urban CA. This study has demonstrated that parallel computing with ‘ghost-
cell’ and load-balancing techniques can significantly reduce the computation time in
urban simulation. Unlike classical CA, urban CA are quite unique because workload
balance is important for implementing parallel computing effectively. The proper dis-
tribution of workloads can affect the efficiency in parallel urban simulation. There are
two major methods of distributing spatial data among processors for parallel computing.

Figure 11. Computation time, speed up, and efficiency of the parallel CA related to the number of
CPUs.

International Journal of Geographical Information Science 817

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

Data decomposition can be based on equal areas or equal workloads. The first option is
relatively simple for implementation. It can have satisfactory results if the study area is
homogeneous. However, it will lead to bias for distributing computation loads among
processors if the study area is complex in terms of land use patterns or development
patterns. Data decomposition based on equal workloads can provide an effective way to
deal with the load-balancing problems. This study proposes a line-scanning method to
obtain optimal load balance. Experiments indicate that this method can significantly
reduce the waiting time among processors.

Moreover, a study region can be divided into horizontal folds, vertical folds, or rectan-
gular sub-regions (chessboard decomposition). The first two divisions assume that the study
area is homogenous in terms of geographical features. In particular, this type of divisions is
useful if the growth patterns are approximately evenly spread out in the region. It seems that
the chessboard decomposition can have more efficient computation if the region has
heterogeneous or polarized development patterns. However, our study indicates that the
CDEL cannot produce better results than RDEL because the former needs extra time for
communication. The execution time of RDEL with eight processors is only 13.8% and
17.2% of that with one processor (ordinary CA simulation) for Dongguan and the Pearl
River Delta, respectively. Therefore, parallel computing can significantly save the time of
urban simulation for large regions by properly distributing workloads across processors. The
further studies could be focused on the consideration of process parallelism.

Acknowledgements

This study was supported by the Hi-tech Research and Development Program of China (863 Program)
(grant no. 2006AA12Z206), the Key National Natural Science Foundation of China (grant no.
40830532), and the National Outstanding Youth Foundation of China (grant no. 40525002).

Figure 12. Initialization time, scatter time, barrier time, computation time, and communication time
of the eight processors for various decomposition schemes.

818 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

References

Al-Tawil, K. and Moritz, C.A., 2001. Performance modeling and evaluation of MPI. Journal of
Parallel and Distributed Computing, 61, 202–223.

Atkinson, D.E., Sawada, M.C., and Gajewski, K., 1998. Emergent spatial structure in vegetation
succession. In: Proceedings of the Annual Meeting of the Canadian Association of Geographer,
Ottawa.

Bandini, S., Mauri, G., and Serra, R., 2001. Cellular automata: from a theoretical parallel computa-
tional model to its application to complex systems. Parallel computing, 27, 539–553.

Barca, D., et al., 1993. Cellular automata methods for modeling lava flow: simulation of the
1986–1987 Etnean eruption. In: C. Kilburn and G. Luongo, eds. Active Lauas. London: UCL
Press.

Batty, M., 1997. Growing Cities (London: Centre for Advanced Spatial Analysis, University College).
Batty, M. and Xie, Y., 1994. From cells to cities. Environment and Planning B: Planning and Design,

21, 531–548.
Cannataro, M., et al., 1995. A parallel cellular automata environment on multicomputers for computa-

tional science. Parallel Computing, 21, 803–823.
Chan, F., Cao, J., and Sun, Y., 2003. High-level abstractions for message-passing parallel program-

ming. Parallel Computing, 29, 1589–1621.
Clarke, K.C., Brass, J.A., and Riggan, P.J., 1994. A cellular automata model of wildfire propagation

and extinction. Photogrammetric Engineering & Remote Sensing, 60, 1355–1367.
Clarke, K.C., Hoppen, S., and Gaydos, L.J., 1997. A self-modifying cellular automaton model of

historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and
Design, 24, 247–261.

Clematis, A., Mineter, M., and Marciano, R., 2003. High performance computing with geographical
data. Parallel Computing, 29 (10), 1275–1279.

Costanza, R. and Voinov, A., 2003. Introduction: spatially explicit landscape simulation models. In: R.
Costanza and A. Voinov, eds. Landscape simulation modeling: a spatially explicit, dynamic
approach. New York: Springer, 3–20.

Deadman, P.D., Brown, R.D., and Gimblett, H.R., 1993. Modelling rural residential settlement patterns
with cellular automata. Journal of Environmental Management, 37, 147–160.

Densham, P.J. and Ding, Y., 1996. Spatial strategies for parallel spatial modelling. International
Journal of Geographical Information Science, 10 (6), 669–698.

Glatzmaier, G.A. and Roberts, P.H., 1995. A 3-dimensional convective dynamo solution with rotating
and finitely conducting inner-core and mantle. Physics of the Earth and Planetary Interiors, 91
(1–3), 63–75.

Goles, E., 1989. Cellular automata, dynamics and complexity. In: P. Manneville, N. Boccara, G.Y.
Vichniac, and R. Bidaux, eds. Cellular automata and modeling of complex physical systems.
Berlin: Springer, 10–20.

Hempel, R. and Walker, D.W., 1999. The emergence of the MPI message passing standard for parallel
computing. Computer Standards & Interfaces, 21, 51–62.

Hutchinson, D., et al., 1996. Parallel neighbourhood modeling: research summary. In: Proc. SPAA ’96.
Italy: Padua, 204.

Kameyama, M. and Yuen, D.A., 2006. 3-D convection studies on the thermal state in the lower mantle
with post-perovskite phase transition. Geophysical Research Letters, 33, L12S10.

Karafyllidis, I. and Thanailakis, A., 1997. A model for predicting forest fire spreading using cellular
automata. Ecological Modeling, 99, 87–89.

Komatitsch, D. and Tromp, J., 2002. Spectral-element simulations of global seismic wave
propagation – I. Validation. Geophysical Journal International, 149 (2), 390–412.

Lett, C., Silber, C., and Barret, N., 1999. Comparison of a cellular automata network and an individual-
based model for the simulation of forest dynamics. Ecological Modeling, 121, 277–293.

Li, X. and Liu, X.P., 2006. An extended cellular automaton using case-based reasoning for simulating urban.
International Journal of Geographical Information Science, 20, 1109–1136.

Li, X. and Yeh, A.G.O., 2000. Modelling sustainable urban development by the integration of
constrained cellular automata and GIS. International Journal of Geographical Information
Science, 14 (2), 131–152.

Li, X. and Yeh, A.G.O., 2002. Neural-network-based cellular automata for simulating multiple land use
changes using GIS. International Journal of Geographical Information Science, 16 (4), 323–343.

International Journal of Geographical Information Science 819

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

Li, X. and Yeh, A.G.O., 2004. Data mining of cellular automata’s transition rules. International
Journal of Geographical Information Science, 18, 723–744.

Mazzariol, M., Gennart, B.A., and Hersch, R.D., 2000. Dynamic load balancing of parallel cellular
automata. Proceedings SPIE Conference, Parallel and Distributed Methods for Image Processing
IV, Volume 4118, San Diego, USA, 21–29.

Morales, D., et al., 2000. Theory and methodology design of parallel algorithms for the single resource
allocation problem. European Journal of Operational Research, 126, 166–174.

Norman, M.G., et al., 1991. The use of the CAPE environment in the simulation of rock fracturing.
Concurrency: Practice and Experience, 3 (6), 687–698.

Owczarz, W. and Zlatev, Z., 2002. Parallel matrix computations in air pollution modeling. Parallel
Computing, 28, 355–368.

Palmer, B. and Nieplocha, J., 2002. Efficient algorithms for ghost cell updates in two classes of MPP
architectures. In: Proceedings of the fifteenth international conference on Parallel and Distributed
Computing Systems (PDCS). ACTA Press: Calgary, Canada.

Pontius, G.R. and Malanson, J., 2005. Comparison of the structure and accuracy of two land change
models. International Journal of Geographical Information Science, 19 (2), 243–265.

Quinn, M.J., 2004. Parallel programming in C with MPI and OpenMP. Columbus: McGraw-Hill, 544.
Sirakoulis, G.C., Karafyllidis, I., and Thanailakis, A., 2000. A cellular automaton model for the effects

of population movement and vaccination on epidemic propagation. Ecological Modeling, 133,
209–223.

Soares-Filho, B.S., Cerqueira, G.C., and Pennachin, C.L., 2002. DINAMICA – a stochastic cellular
automata model designed to simulate the landscape dynamics in an Amazonian colonization
frontier. Ecological Modeling, 154, 217–235.

Turton, I. and Openshaw, S., 1998. High-performance computing and geography: developments,
issues, and case studies. Environment and Planning A, 30 (10), 1839–1856.

Vokorokos, L., 2005. Parallel computer system utilization in geographic information systems. IEEE
3rd International Conference on Computational Cybernetics, Maurı́cius, April 13–16, Budapest
Mad’arsko, 333–338.

White, R. and Engelen, G., 1993. Cellular automata and fractal urban form: a cellular modelling
approach to the evolution of urban land-use patterns. Environment and Planning A, 25,
1175–1199.

Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conver-
sions. International Journal of Geographical Information Science, 16, 795–818.

Wu, F. and Webster, C.J., 1998. Simulation of land development through the integration of cellular
automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25,
103–126.

Zhang, H., et al., 2007. Toward an automated parallel computing environment for geosciences. Physics
of the Earth and Planetary Interiors, 163, 2–22.

820 X. Li et al.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
L
i
,

X
.
]

A
t
:

0
0
:
3
1

1
7

A
p
r
i
l

2
0
1
0

